Yongseok Kwon

■kwonys@umich.edu · �kwonyos.github.io

EDUCATION

Unive	rsity of M	ichigan					
M.S.E.	in Mechai	nical Eng	gineer	ing			
-	D 1 /		D1		~	1 0	

- Focus: Robotics, Motion Planning, Control, Optimization, Deep Learning
- GPA: 4.0/4.0

Ulsan National Institute of Science and Technology (UNIST)

B.S. in Mechanical and Aerospace Engineering, Human Factors Engineering

- Honors: Summa Cum Laude
- GPA:3.94/4.3

PUBLICATIONS

• Jonathan Michaux, Qingyi Chen, **Yongseok Kwon**, Ram Vasudevan."Reachability-based Trajectory Design with Neural Implicit Safety Constraints." *Robotics: Science and Systems*, Daegu, Republic of Korea, 2023. [webpage, arXiv, code]

EXPERIENCE

Korea Army Research Center for Future and Innovation (KARCFI), Republic of Korea Army *Feb. 2023 – Aug. 2024* Robotics Researcher (Mandatory Military Obligation)

- Conducted fieldwork near the Korean Demilitarized Zone to identify technological needs for national defense.
- Managed national defense research initiatives with a specific focus on unmanned reconnaissance systems.

Robotics and Optimization for Analysis of Human Motion (ROAHM) Lab &	Jul. 2021 – Jan. 2023
Ford Center for Autonomous Vehicles (FCAV), University of Michigan	Jun. 2022 – Jan. 2023
Research Assistant & Research Engineer	Advisor: Prof. Ram Vasudevan

- Developed a Python framework for parallel reachable set computation using polynomial zonotopes, resulting in a 2,000-fold speed enhancement. [webpage, code]
- Trained a neural signed distance function between reachable workspace and surrounding objects using Eikonal loss.
- Developed a novel trajectory planner with neural implicit constraints, achieving a speed of 40 Hz for 7 DoF robot arm.
- Created a provably safe reinforcement learning algorithm incorporating polynomial zonotope-based safety shield.

Locomotor Control Systems (LOCO) Lab, University of Michigan

Research Assistant

- Trained a neural network for a gait model with positional encoded gait phase based on human walking data.
- Designed a gait state estimator using an Extended Kalman Filter (EKF) integrated with the neural gait model.
- Demonstrated real-time swing motion of an EKF-based controller using open-source robotic leg hardware.

Bio-Robotics and Control (BiRC) Lab, UNIST

Research Intern

- Designed a novel decoupling mechanism for tendon-driven serial link robots.
- Managed various components of a hydraulic robot arm, including hydraulic actuators, encoders, and assembly.

Ann Arbor, MI Aug. 2020 – Aug. 2022

Ulsan, Republic of Korea Mar. 2016 – Feb. 2020

Jan. 2021 - May 2021

Mar. 2019 – Jul. 2019

Advisor: Prof. Joonbum Bae

Advisor: Prof. Robert D. Gregg IV

COURSE PROJECTS

11ansiormers for Wouldn	Planning, University of Michigan	Fall 2021	
Course: Introduction to Rob	Advisor: Prof. Nima Fazeli		
• Generated expert dataset	via trained agent for offline reinforcement learning.		
• Deployed the decision tra	ansformer for a multi-link arm reaching task.		
Model Predictive Control	l for Autonomous Car, University of Michigan	Fall 2021	
Course: Self Driving Car		Advisor: Prof. Ram Vasudevar	
• Implemented a high-leve	el planner to predict waypoints for lane-changing maneuver	s in autonomous driving.	
• Formulated convex collis	sion avoidance constraints for trajectory planning in dynami	ic racing scenarios.	
UAV Navigation via Dubi	ns Path Planning, UNIST	Spring 2019	
Course: UAV Flight Contro	ol and Simulation	Advisor: Prof. Hyondong Oh	
•	ol and Simulation sive simulation dynamics model and a tracking controller fo	Advisor: Prof. Hyondong Oh or UAV navigation.	
• Developed a comprehense		or UAV navigation.	
• Developed a comprehense	sive simulation dynamics model and a tracking controller fo	or UAV navigation.	
Developed a comprehensImplemented a Dubins-comprehense	sive simulation dynamics model and a tracking controller fo	or UAV navigation.	
 Developed a comprehens Implemented a Dubins-c SKILLS 	sive simulation dynamics model and a tracking controller fo curve-based RRT to generate paths under kinematic constrai	or UAV navigation.	
 Developed a comprehens Implemented a Dubins-c SKILLS Programming Software 	sive simulation dynamics model and a tracking controller for curve-based RRT to generate paths under kinematic constrait Python, MATLAB	or UAV navigation. ints for UAVs.	
 Developed a comprehens Implemented a Dubins-c SKILLS Programming Software 	sive simulation dynamics model and a tracking controller for curve-based RRT to generate paths under kinematic constrain Python, MATLAB IPOPT, Gurobi, OSQP, MuJoCo Pytorch, Stable-Baseline3, Weights & Biases, Linux, Conda	or UAV navigation. ints for UAVs.	
 Developed a comprehens Implemented a Dubins-constraint SKILLS Programming Software Frameworks and Others HONORS AND AWARD 	sive simulation dynamics model and a tracking controller for curve-based RRT to generate paths under kinematic constrain Python, MATLAB IPOPT, Gurobi, OSQP, MuJoCo Pytorch, Stable-Baseline3, Weights & Biases, Linux, Conda	or UAV navigation. ints for UAVs.	

2016 - 2017

Academic Performance Scholarship, UNIST

• Full-tuition scholarship for the first two years of undergraduate studies.